A Generalized Spectral Collocation Method with Tunable Accuracy for Variable-Order Fractional Differential Equations | SIAM Journal on Scientific Computing | Vol. 37, No. 6 | Society for Industrial and Applied Mathematics

نویسنده

  • FANHAI ZENG
چکیده

We generalize existing Jacobi–Gauss–Lobatto collocation methods for variable-order fractional differential equations using a singular approximation basis in terms of weighted Jacobi polynomials of the form (1 ± x)μP a,b j (x), where μ > −1. In order to derive the differentiation matrices of the variable-order fractional derivatives, we develop a three-term recurrence relation for both integrals and derivatives of these weighted Jacobi polynomials, hence extending the three-term recurrence relationship of Jacobi polynomials. The new spectral collocation method is applied to solve fractional ordinary and partial differential equations with endpoint singularities. We demonstrate that the singular basis enhances greatly the accuracy of the numerical solution by properly tuning the parameter μ, even for cases where we do not know explicitly the form of singularity in the solution at the boundaries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalized Spectral Collocation Method with Tunable Accuracy for Variable-Order Fractional Differential Equations

We generalize existing Jacobi–Gauss–Lobatto collocation methods for variable-order fractional differential equations using a singular approximation basis in terms of weighted Jacobi polynomials of the form (1 ± x)μP a,b j (x), where μ > −1. In order to derive the differentiation matrices of the variable-order fractional derivatives, we develop a three-term recurrence relation for both integrals...

متن کامل

A Generalized Spectral Collocation Method with Tunable Accuracy for Fractional Differential Equations with End-Point Singularities

We develop spectral collocation methods for fractional differential equations with variable order with two end-point singularities. Specifically, we derive three-term recurrence relations for both integrals and derivatives of the weighted Jacobi polynomials of the form 1 x μ1 1 Æ x 2P a,b j x a, b, μ1, μ2 Æ1 , which leads to the desired differentiation matrices. We apply the new differentiation...

متن کامل

A Petrov--Galerkin Spectral Method of Linear Complexity for Fractional Multiterm ODEs on the Half Line | SIAM Journal on Scientific Computing | Vol. 39, No. 3 | Society for Industrial and Applied Mathematics

Abstract. We present a new tunably accurate Laguerre Petrov–Galerkin spectral method for solving linear multiterm fractional initial value problems with derivative orders at most one and constant coefficients on the half line. Our method results in a matrix equation of special structure which can be solved in O(N logN) operations. We also take advantage of recurrence relations for the generaliz...

متن کامل

Comparative study on solving fractional differential equations via shifted Jacobi collocation method

In this paper, operational matrices of Riemann-Liouville fractional integration and Caputo fractional differentiation for shifted Jacobi polynomials are considered. Using the given initial conditions, we transform the fractional differential equation (FDE) into a modified fractional differential equation with zero initial conditions. Next, all the existing functions in modified differential equ...

متن کامل

Approximate solution of the fuzzy fractional Bagley-Torvik equation by the RBF collocation method

In this paper, we propose the spectral collocation method based on radial basis functions to solve the fractional Bagley-Torvik equation under uncertainty, in the fuzzy Caputo's H-differentiability sense with order ($1< nu < 2$). We define the fuzzy Caputo's H-differentiability sense with order $nu$ ($1< nu < 2$), and employ the collocation RBF method for upper and lower approximate solutions. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015